2022

1st Semester Examination

MATHEMATICS (Honours)

Paper : C 1-T
[Calculus, Geometry and Differential Equation]

[CBCS]

Full Marks : 60
Time : Three Hours
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
Group - A

1. Answer any ten questions :
(i) Find y_{n} for the function $y=\frac{x^{n}}{x-1}$.
(ii) Show that the curve $y^{3}=8 x^{2}$ is concave to the foot

1 of the ordinate everywhere except at the origin.
(ii) If the axes are rotated through an angle 45° without changing the origin, then find the new form of the equation $x^{2}-y^{2}=a^{2}$.

(in) Find the equation of the circle lying on the sphere $x^{2}+y^{2}+z^{2}-2 y-4 z=11$ and having its centre at $(1,3,4) . \quad x^{2}+y^{2}+z^{2}-2 x-6 y-82-1924$
(v) Find the total area of the circle $x^{2}+y^{2}+2 x=9$.
(4) If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$, for $n \geq 2$, find the value of $I_{n}+I_{n-2}$.
(yii) Find the asymptotes of the curve $x^{3}+y^{3}=3 a x y$.
(yiii) Find the integrating factor of

$$
\left(1+x^{2}\right) y_{1}+y=e^{\tan ^{-1} x}
$$

(18) Find the singular solution of $y=x \frac{d y}{d x}-\left(\frac{d y}{d x}\right)^{2}$.
$(2 y)$. Find the nature of the conic

$$
3 x^{2}+2 x y+3 y^{2}-16 x+20=0
$$

(xi) Calculate the sum of the reciprocals of two perpendicular focal chord of the conic $l / r=1+e \cos \theta$.
$\sqrt{2}$ (xii) Show that $\lim _{x \rightarrow \infty}\left(\frac{a x+1}{a x-1}\right)^{x}=e^{2 / a}, a>0$

$$
(3)
$$

(xiii) If $u=\sin a x+\cos a x$, show that

$$
u_{n}=a^{n}\left\{1+(-1)^{n} \sin 2 a x\right\}^{\frac{1}{2}}
$$

(xiv) Solve $p-\frac{1}{p}-\frac{x}{y}+\frac{y}{x}=0$ where $p \equiv \frac{d y}{d x}$.
(xv) Evaluate $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+2 x}-x\right)$

Group - B

2. Answer any four questions :
(i) State and prove Leibnitz's theorem. If $y=\tan ^{-1} x$ find $\left(y_{n}\right)_{0}$ by using Leibnitz's theorem.
(ii) Prove that the locus of the middle points of focal chords of a conic is an another conic.
(iii) If $J_{n}=\int \sin n \theta \sec \theta d \theta$, show that
$J_{n}+J_{n-2}=-\frac{2}{n-1} \cos (n-1) \theta$. Hence deduce the
value $\int_{0}^{\pi / 2} \frac{\sin 3 \theta \cos 3 \theta}{\cos \theta} d \theta$
(iv) If S be the length of the arc of $3 a y^{2}=x(x-a)^{2}$, measured from the origin to the point (x, y), show that $3 s^{2}=4 x^{2}+3 y^{2}$.
(v) Find the equation to the right circular cylinder of radius a, whose axis passes through the origins and makes equal angles with the co-ordinates axes.
(vi) Solve : $16 x^{2}+2\left(\frac{d y}{d x}\right)^{2} y-\left(\frac{d y}{d x}\right)^{3} x=0$.

Group - C

3. Answer any two questions:

(i) (a) Explain L'Hospital Rule. Using L'Hospital Rule prove that

$$
\lim _{x \rightarrow \infty}\left[\frac{a_{1}^{1 / x}+a_{2}^{1 / x}+\ldots+a_{n}^{1 / x}}{n}\right]^{n x}=a_{1} a_{2} \ldots a_{n} .
$$

(b) Find the envelop of the straight line $\frac{x}{a}+\frac{y}{b}=1, a$ and b are variable parameters connected by the relation $a+b=c$.
(ii) (a) What is a great circle? Obtain the equation of the sphere having the circle $x^{2}+y^{2}+z^{2}$ $+10 y-4 z-8=0, x+y+z=3$ as the great circle.
(b) Reduce the equation $3 x^{2}+5 y^{2}+3 z^{2}+2 y z$ $+2 z x+2 x y-4 x-8 z+5=0$, to the standard form and find the nature of the conic. $3+7$

(5)

(iii) (a) Find the volume of ellipsoid generated by the revolution of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ about major axis and minor axis.
(b) Define singular and general solution of the differential equation. Find the both solutions of the following differential equation:

$$
p^{3} x-p^{2} y-1=0
$$

(iv) (a) Find the rectilinear asymptotes of the following curve :

$$
x^{3}+x^{2} y-x y^{2}-y^{3}+2 x y+2 y^{2}-3 x+y=0
$$

(b) If $f(m, n)=\int_{0}^{\pi / 2} \cos ^{m} x \sin n x d x$ prove that
$f(m, n)=\frac{1}{m+n}+\frac{m}{m+n} f(m-1, n-1)$
$m, n>0$. Hence deduce that

$$
f(m, n)=\frac{1}{2^{m+1}}\left(\frac{2}{1}+\frac{2^{2}}{2}+\frac{2^{3}}{3}+\ldots+\frac{2^{m}}{m}\right)
$$

2022

1st Semester Examination MATHEMATICS (Honours)

Paper : C 2-T

[Algebra]
 [CBCS]

Full Marks : 60
Time : Three Hours
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer any ten questions:

$$
2 \times 10=20
$$

(a) If a, b, c be three positive real numbers in Harmonic Progression and n be a positive integer greater than 1 , then prove that $a^{n}+c^{n}=2 b^{n}$.
(p) Geometrically represent the complex number $z=a+b i$.
(c) Find the conditions that the roots of the equation $x^{4}+p x^{3}+q x^{2}+r x+s=0$ are in G.P.
(d) Apply Descartes' rule of signs to determine the nature of the roots of the equation $x^{4}+x^{2}+x-1=0$.
(e) Diminish the roots of $4 x^{3}-8 x^{2}-19 x+38=0$ by 2 .
(f) If $a, b \in \mathbb{Z}$, not both zero, such that $\operatorname{gcd}(a, b)=$ $a u+b v$, prove that $g c d(u, v)=1$, where $u, v \in \mathbb{Z}$.
(g) Can a null vector be an element of a basis set? Support your answer.
(h) Find the last two digits in 7^{100}.
(i) If a row echelon matrix R has r non-zero rows, then prove that rank of $R=r$.
(1) If λ be an eigen value of an $n \times n$ matrix A, prove that λ^{m} is an eigen value of the matrix A^{m}, where $m \in \mathbb{Z}^{+}$.
(k) Show that the subspace $U+W$ is the smallest subspace of vector space V containing the subspaces U and W.
(1) For what real values of k is the set

$$
S=\{(k, 1,1,1),(1, k, 1,1),(1,1, k, 1),(1,1,1, k)\}
$$

linearly independent in vector space \mathbb{R}^{4} ?

(3)

(m) Let V and W be vector spaces over a field F, and $T: V \rightarrow W$ be a linear mapping. Prove that T is injective if and only if $\operatorname{Ker} T=\{\theta\}$.
(A) Use Euclidean algorithm to find integers u and v satisfying $52 u-91 v=78$.
(ब) Use Division algorithm to show that the cube of any integer is of the form $9 k$ or $9 k \pm 1, k \in \mathbb{Z}$.

Group - B

2. Answer any four questions:

(a) Prove that $\arg z-\arg (-z)= \pm \pi$ according as $\arg z>0$ or $\arg z<0$.
(b) If a, b, c be positive real numbers and $a b c=k^{3}$, prove that $(1+a)(1+b)(1+c) \geq(1+k)^{3}$.
(c) Show that the equation $(x-a)^{3}+(x-b)^{3}+(x-c)^{3}+(x-d)^{3}=0$, where a, b, c, d are not all equal, has only one real root.
(d) If α, β, γ be the roots of the equation $x^{3}+p x^{2}+q x+r=0$, then form the equation whose roots are $\alpha+\frac{1}{\alpha}, \beta+\frac{1}{\beta}, \gamma+\frac{1}{\gamma}$.

(4)

(e) Find a basis and dimension of the subspace S of \mathbb{R}^{3} defined by

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: 2 x+y-z=0\right\} .
$$

(f) Use the principle of induction to prove that $2.7^{n}+3.5^{n}-5$ is divisible by $24, \quad \forall n \in \mathbb{N}$.

Group - C

Answer any two questions: $\quad 10 \times 2=20$
3. (a) If $\alpha=\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$ and $g c d(n, p)=1$, then prove that $1+\alpha^{p}+\alpha^{2 n}+\ldots+a^{(n-1) p}=0$.
(b) Prove that in the euqation $f(x)=0$ with real coefficients, imaginary roots occur in conjugate pairs.

$$
5+5
$$

4! (a) Solve the equation $x^{3}-3 x^{2}+12 x+16=0$ by Cardan's method.
(b) State Cayley-Hamilton theorem. Using the theorem describe a method of computing A^{-1} when A is a non-singular square matrix.

$$
6+(1+3)
$$

(5)

5. (a) If
$\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
are the eigen vectors corresponding the eigen values $1,2,0$ of the real square matrix A of order 3 , then find A.
(b) Find a linear mapping $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $\operatorname{Im} T$ is the subspace
$U=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y+z=0\right\}$
6. (a) For what value of k the planes $x-4 y+5 z=k$, $x-y+2 z=3$, and $2 x+y+z=0$ intersect in a line? Find the equations of the line in that case.
(b) If $z=\cos \theta+i \sin \theta$ and $m \in \mathbb{Z}^{+}$, then show that

$$
\begin{equation*}
\frac{z^{2 m}-1}{z^{2 m}+1}=i \tan m \theta . \tag{4+2}
\end{equation*}
$$

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

1st Semester

MATHEMATICS

PAPER-C1T

CALCULUS , GEOMETRY AND DIFFERENTIAL EQUATION
Full Marks : 60
Time : 3 Hours

The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.
4×12

1. (a) Find the equation of the asymptotes of the curve

$$
r^{n} f_{n}(\theta)+r^{n-1} f_{n-1}(\theta)+\ldots+f_{0}(\theta)=0
$$

(b) If $I_{n}=\int_{0}^{\pi / 2} \cos ^{n-2} x \operatorname{Sin} n x d x$ show that

$$
\begin{align*}
& 2(\mathrm{n}-1) \mathrm{I}_{\mathrm{n}}=1+(\mathrm{n}-2) \mathrm{I}_{\mathrm{n}-1} \text { and hence deduce } \\
& I_{n}=\frac{1}{n-1}
\end{align*}
$$

2. (a) Circles are described on the double ordinates of the parabola $y^{2}=4 a x$ as diameters. Prove that the envelope is the parabola $y^{2}=4 a(x+a)$.
(b) If $y=\sin \left(m \cos ^{-1} \sqrt{x}\right)$ then prove that $\lim _{x \rightarrow 0} \frac{y_{n+1}}{y_{n}}=\frac{4 n^{2}-m^{2}}{4 n+2}$.
(c) Find a,b,c such that $\frac{a e^{x}-b \cos x+c e^{-x}}{x \sin x} \rightarrow 2$ as $x \rightarrow 0$. $4+4+4$
3. (a) Show that the arc of the upper half of the cardiode $r=a(1-\cos \theta)$ is bisected at $\theta=\frac{2}{3} \pi$. Find also the perimeter of the curve.
(b) Show that the curve $r e^{\theta}=a(1+\theta)$ has no point of inflexion.
(c) Find the asymptotes of the parametric curve $x=\frac{t^{2}+1}{t^{2}-1}$ and $y=\frac{t^{2}}{t-1}$.
4. (a) Show that feet of the normals from the point (α, β, v) to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ lie on the intersection of the ellipsoid and the cone $\frac{\alpha a^{2}\left(b^{2}-c^{2}\right)}{x}+\frac{\beta b^{2}\left(c^{2}-a^{2}\right)}{y}+\frac{v c^{2}\left(a^{2}-b^{2}\right)}{z}=0$.
(b) Find the equation of the right circular cylinder whose axis is $\frac{x}{1}=\frac{y}{-2}=\frac{z}{2}$ and radius is 2.
5. (a) Prove that $\cosh (x+y)=\cosh x$ coshy $+\sinh x$ sinhy.
(b) Two spheres of radii r_{1} and r_{2} cut orthogonally. Prove that the radius of their common circle is $\frac{r_{1} r_{2}}{\sqrt{r_{1}{ }^{2}+r_{2}{ }^{2}}}$.
(c) Find the polar equation of the normal to the conic $\frac{1}{r}=1+e \cos \theta, e>0$. $2+5+5$
6. (a) Find the equation of the generator of the cone $x^{2}+y^{2}=z^{2}$ through the point $(3,4,5)$.
(b) Given that the asteroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=c^{\frac{2}{3}}$ is the envelope of the family of ellips $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, show that $\mathrm{a}+\mathrm{b}=\mathrm{c}$.
(c) State the existence and uniqueness theorem for the solution of ordinary differential equation.
7. (a) Solve : $x \frac{d y}{d x}-y=x \sqrt{x^{2}+y^{2}}$.
(b) If m and n are positive integers, show that

$$
\int_{a}^{b}(x-a)^{m}(\mathrm{~b}-x)^{n} d x=\frac{m!n!}{(m+n+1)!}(b-a)^{m+n+1}
$$

(c) Solve $y=2 p x+y^{2} p^{3}$ and find the general and singular solutions.
8. (a) Compute the length of the curve $x=2 \cos \theta, y=\sin 2 \theta, 0 \leq \theta \leq \pi$.
(b) Find the points of inflection on the curve $r\left(\theta^{2}-1\right)=a \theta^{2}$
(c) If $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x, n$ beine positive integer greater than 2 , prove that

$$
(n+1) I_{n}+(n-1) I_{n-2}=\frac{\pi}{2}-\frac{1}{n}
$$

Answer any six questions.

9. Find the value of $\lim _{x \rightarrow \infty}\left[a_{0} x^{m}+a_{1} x^{m-1}+\ldots .+a_{m}\right]^{1 / x}$, in being a positive integer and $a_{0} \neq 0$.
10. Let $I_{n}=\int_{0}^{1}(\ln x)^{h} d x$. Show that $I_{n}=(-1)^{n} \underline{n}, \mathrm{n}$ being positive integer.
11. The curves $y=x^{n}, y^{m}=x(m, n>0)$ meet at $(0,0)$ and $(1,1)$. Find the area between these two curves.
12. Find α if x^{α} be an integrating factor of $\left(x-y^{2}\right) d x+2 x y d y=0$.
13. Find the curve for which the curvature is zero at every point and which passes through the point $(0,0)$ where $\frac{d y}{d x}=3 / 2$.
14. Solve the differential equation :

$$
4 x^{3} y d x+\left(x^{4}+y^{4}\right) d y=0
$$

15. Generate a reduction formula for $\int \tan ^{n} x d x, n \in Z^{+}$and $n>1$.
16. Find the equations of the straight lines in which the plane $2 \mathrm{x}+\mathrm{y}-\mathrm{z}=0$ cuts the cone $4 \mathrm{x}^{2}-\mathrm{y}^{2}+3 \mathrm{z}^{2}=0$.
17. Find the asymptote (if any) of the curve $y=a \log \left[\sec \left(\frac{x}{a}\right)\right]$.
18. On the ellipse $r(5-2 \cos \theta)=21$, find the point with the greatest radius vector.

বিদ্যাসাগর বিশ্ববিদ্যালয়

VIDYASAGAR UNIVERSITY

B.Sc. Honours Examination 2021

(CBCS)

1st Semester

MATHEMATICS

PAPER-C2T
ALGEBRA
Full Marks : 60

Time : 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any four questions.

1. (a) If $a_{1}, a_{2}, \ldots a_{n}$ be all positive real numbers and $S=a_{1}+a_{2}+\ldots+a_{n} ;$ Prove that $\left(\frac{s-a_{1}}{n-1}\right)\left(\frac{s-a_{2}}{n-1}\right) \ldots\left(\frac{s-a_{n}}{n-1}\right)$ $>a_{1} a_{2} \ldots a_{n}$ unless $a_{1}=a_{2}=\ldots=a_{n}$
(b) If $\alpha, \beta, \gamma, \delta$ are the roots of the equation $\mathrm{t}^{4}+\mathrm{t}^{2}+1=0$ and n is a positive integer, prove that $\alpha^{2 n+1}+\beta^{2 n+1}+\gamma^{2 n+1}+\delta^{2 n+1}=0$.
(c) Find the relation among the coefficients of the equation $a x^{3}+3 b x^{2}$ $+3 c x+d=0$ if its roots be in arithmetic progression. $4+5+3$
2. (a) Let $C[0,1]$ be the set of all real continuous functions on the closed interval $[0,1]$ and T be a mapping from $c[0,1]$ to R defined by $T(f)=\int_{0}^{1} f(x) d x, f \in c[0,1]$. Show that T is a linear transformation.
(b) Let v be a real vector space with a basis $\left\{\vec{\alpha}_{1}, \vec{\alpha}_{2}, . ., \vec{\alpha}_{n}\right\}$,

Examine if $\left\{\vec{\alpha}_{1}+\vec{\alpha}_{2}, \vec{\alpha}_{2}+\vec{\alpha}_{3}, \ldots, \vec{\alpha}_{n}+\vec{\alpha}_{1}\right\}$ is also a basis of V.
(c) Find $K \in R$ so that the set $\mathrm{S}=\{(1,2,1),(\mathrm{k}, 3,1),(2, \mathrm{k}, 0)\}$ is linearly dependent in $1 R^{3}$.
$4+5+3$
3. (a) Prove that $6 \mid n(n+1)(n+2), n \in \mathbb{Z}$.
(b) Use the theory of congruence to find the remainder when the sum $1^{5}+2^{5}+3^{5}+\ldots+100^{5}$ is divided by 5. $5+5+2$
(c) Find the values of a for which the equation $a x^{3}-6 x^{2}+9 x-4=0$ may have multiple roots.
$5+5+2$
4. (a) Find x if the rank of the matrix $\left(\begin{array}{cccc}1 & 3 & -3 & x \\ 2 & 2 & x & -4 \\ 1 & 1-x & 2 x+1 & -8-3 x\end{array}\right)$ be 2 .
(b) Find the value of λ for which the system of equations
$2 x_{1}-x_{2}+x_{3}+x_{4}=1, x_{1}+2 x_{2}-x_{3}+4 x_{4}=2, x_{1}+7 x_{2}-4 x_{3}+11 x_{4}$ $=\lambda$ is solvable.
(c) If $\alpha+\beta+\gamma=0$, Prove that $\frac{\alpha^{5}+\beta^{5}+\gamma^{5}}{5}=\frac{\alpha^{3}+\beta^{3}+\gamma^{3}}{3} \cdot \frac{\alpha^{2}+\beta^{2}+\gamma^{2}}{2}$ $4+4+4$
5. (a) If α, β, γ be the roots of the equation $x^{3}-2 x^{2}+3 x-1=0$,
find the equation whose roots are $\frac{\beta \gamma-\alpha^{2}}{\beta+\gamma-2 \alpha}, \frac{\gamma \alpha-\beta^{2}}{\gamma+\alpha-2 \beta}, \frac{\gamma \beta-\gamma^{2}}{\alpha+\beta-2 \gamma}$
(b) Solve : $(1+x)^{2 n}+(1-x)^{2 n}=0$
(c) If $S_{n}=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$, prove that $S_{n}>\frac{2 n}{n+1}$ if $\mathrm{n}>1$.
6. (a) Show that $(2 \mathrm{n}+1)^{2} \equiv 1(\bmod 8)$ for any natural number n .
(b) Use Cayley Hamiltan theorem, to find A^{50} where $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$.
(c) Find the dimension of the subspace $S \cap T$ of \mathbb{R}^{4} where

$$
\begin{align*}
& S=\left\{(x, y, z, w) \in \mathbb{R}^{4}: x+y+z+w=0\right\} . \\
& T=\left\{(x, y, z, w) \in \mathbb{R}^{4}: 2 x+y-z+w=0\right\} .
\end{align*}
$$

7. (a) If the roots of the equation $x^{3}+p x^{2}+q x+r=0$ are in A. P where $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are real numbers, prove that $p^{2} \geq 3 q$.
(b) Find all values of $i^{1 / 7}$.
(c) Prove that for any two integers U and $\mathrm{V}>0$, there exist two unique integers m and n such that

$$
U=m V+n, \quad o \leq n<V
$$

8. (a) If $a \equiv b(\bmod \mathrm{~m})$ and $a \equiv c(\bmod n)$, prove that $b \equiv c(\bmod d)$ where $\mathrm{d}=\operatorname{gcd}(\mathrm{m}, \mathrm{n})$.
(b) Find the basis for the column space of the matrix

$$
\left(\begin{array}{ccc}
1 & 2 & -1 \\
2 & 3 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

(c) Determine the conditions for which the system of equations

$$
\begin{aligned}
& x+2 y+z=1 \\
& 2 x+y+3 z=b \\
& x+a y+3 z=b+1
\end{aligned}
$$

has unique solution, many solutions and no solution.
9. Find the general values of the equation $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots(\cos n \theta+i \sin n \theta)=-i$, where θ is real.
10. If the equation $x^{4}+p x^{2}+q x+r=0$ has three equal roots then show that $8 p^{3}+27 q^{2}=0$.
11. Solve the equations $x+p y+p^{2} z=p^{3}, x+q y+q^{2} z=q^{3}, x+r y+r^{2} z=r^{3}$.
12. Find the equation whose roots are cubes of the roots of the cubic $x^{3}+3 x^{2}+2=0$.
13. Prove that $n^{2}+2$ is not divisible by 4 for any integer n.
14. Show that the set of all points on the line $y=m x$ forms a sub space of the vector space \mathbb{R}^{2}.
15. Find the number of divisors and their sum of 10800 .
16. Find the greatest value of $x y z$ where x, y and z are positive real numbers satisfying $x y+y z+z x=27$.
17. If A and B be two square invertible matrices, then prove that $A B$ and $B A$ have the same eigen values.
18. Show that eigen values of the matrix $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right)$ are all real.

	বিদ্যাসাগর বিশ্ববিদ্যালয় VIDYASAGAR UNIVERSITY Question Paper
	B.Sc. Honours Examinations 2020 (Under CBCS Pattern) Semester - I Subject: MATHEMATICS Paper: C 1-T
	Full Marks : 60 Time : 3 Hours
	Candidates are required to give their answers in their own words as far as practicable. The figures in the margin indicate full marks.
	Answer any three from the following questions : 1. (a) Evaluate the following limits: $\lim _{x \rightarrow 0} x \ln (\sin x)$ in $(0, \pi)$. (b) Show that the four asymptotes of the curve $\left(x^{2}-y^{2}\right)\left(y^{2}-4 x^{2}\right)+6 x^{3}-5 x^{2} y-3 x y^{3}+2 y^{3}-x^{2}+3 x y-1=0$ cut the curve in eight points which lie on the circle $x^{2}+y^{2}=1$. (c) Prove that the envelope of a variable circle whose centre lies on the parabola $y^{2}=4 a x$ and which passes through its vertex is $2 a y^{2}+x\left(x^{2}+y^{2}\right)=0$

(d) What are the points of inflection of the function $f(x)=3 x^{4}-8 x^{3}$.

4
2. (a) What do you mean by rectillinear asymptotes to a curve ?
(b) Find the equation of the envelope of the family of curve represented by equation $x^{2} \sin \alpha+y^{2} \cos \alpha=a^{2}$.
(c) If $y=\left(\sin ^{-1} x\right)^{2}$ show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$. Also find $y_{n}(0)$.
(d) Find the asymptotes of the curve $(x+y)(x-2 y)(x-y)^{2}+3 x y(x-y)+x^{2}+y^{2}=0$.
3. (a) If $I_{n}=\int_{0}^{1} x^{n} \tan ^{-1} x d x, n>2$ then prove that $(n+1) I_{n}+(n-1) I_{n-2}+\frac{1}{n}=\frac{\pi}{2}$.
(b) Determine the length of one arc of the cycloid $x=a(\theta-\sin \theta), y=a(1-\cos \theta)$.
(c) Find the reduction formula for $\int \sin ^{m} x \operatorname{Cos}^{n} x d x$ where either m or n or both are negative integers. And hence find $\int \frac{\cos ^{4} x}{\sin ^{2} x} d x$.
(d) Find the whole length of the loop of the curve $9 a y^{2}=(x-2 a)(x-5 a)^{2}$.
4. (a) Find the eccentricity and the vertex of the conic $r=3 \sec ^{2} \frac{\theta}{2}$.
(b) Find the polar equation of the ellipse $\frac{x^{2}}{36}+\frac{y^{2}}{20}=1$.
(c) A sphere of radius k passes through the origin and meets the axes in $\mathrm{A}, \mathrm{B}, \mathrm{C}$. Prove that the locus of the centroid of the triangle ABC is the sphere $9\left(x^{2}+y^{2}+z^{2}\right)=4 k^{2}$.
(d) Show that the plane $y+6=0$ intersects the hyperbolic paraboloid $\frac{x^{2}}{5}-\frac{y^{2}}{4}=6 z$ in parabola.
5. (a) For what angle must t he axes be turned to remove the term x^{2} from $x^{2}-4 x y+3 y^{2}=0$.
(b) Find the centre and the radius of the circle $3 x^{2}+3 y^{2}+3 z^{2}+x-5 y-2=0$, $x+y=2$.
(c) P is a variable point such that its distance from the xy-plane is always equal to one fourth the square of its distance from the y-axis. Show that the locus of P is a cylinder.
(d) Reduce the equation $7 x^{2}+y^{2}+z^{2}+16 y z+8 z x-8 x y+2 x+4 y-40 z-14=0$ to the canonical form and find the nature of the conicoid it represents.
6. (a) Solve : $\left(1+y^{2}\right) d x-\left(\tan ^{-1} y-x\right) d y=0$.
(b) Find the singular solution of $x p^{2}-(y-x) p-y=1$.
(c) Solve and find the singular solutions of $p^{4}=4 y(x p-2 y)^{2}$.
(d) Solve: $y\left(x y+2 x^{2} y^{2}\right) d x+x\left(x y-x^{2} y^{2}\right) d y=0$.

Total Page - 8

UG/1st Sem/MATH(H)/T/19

 2019
B.Sc.

1st Semester Examination MATHEMATICS (Honours)

Paper - C 1-T

Time : 3 Hours

Full Marks : 60

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Illustrate the answers wherever necessary.
Unit - I

1. Answer any three of the following questions: $3 \times 2=6$

$$
\text { (a) If } y=c^{a x} \cos ^{2} b x \text {, find } y_{n}(a, b>0) \text {. }
$$

(b) Find the oblique asymptotes of the curve

$$
y=\frac{3 x}{2} \log \left(e-\frac{1}{3 x}\right)
$$

(c) If $y=x^{n-1} \log x$, then prove that $y_{n}=\frac{(n-1)!}{x}$.
(d) What is reciprocal spiral? Sketch it.
(e) The parabolic path is given by

$$
y=x \tan \theta-\frac{x^{2}}{4 h \cos ^{2} \theta}
$$

what will be the asymptote of parabolic paths ?
2. Answer any one questions : $1 \times 10=10$
(a) (i) Find the evolute of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. 5
(ii) Let $P_{n}=D^{\prime \prime}\left(x^{n} \log x\right)$.

Prove that $P_{n}=n P_{n-1}+n-1$. Hence show that $P_{n}=n!\left(\log x+1+\frac{1}{2}+\ldots+\frac{1}{n}\right)$.
(1)
(b) (i) Prove that the envelope of circles whose centres lie on the rectangular hyperbola $x y-c^{2}$ and which pass throuph its centre in $\left(x^{\prime}+y^{\prime}\right)^{\prime}-16 x^{\prime} x y$ 5
(ii) Find the point of inflexion on the curve $\left(\theta^{2}-1\right) r=a \theta^{\prime}$ 5

I/nit = II

3. Answer any two questions:
(i) If $I_{n}=\int_{0}^{n / 2} \cos ^{n 2} x \sin x d x, n>2$. Prove that

$$
2(n-1) I_{n}=1+(n-2) I_{n} .
$$

(b) Find the length of the curve

$$
x=e^{6} \sin \theta \text { and } y=e^{9} \cos \theta
$$

between $0=0$ to $0=\frac{\pi}{2}$.
(a) Find the reduction formula for

$$
\int \cos ^{\prime \prime \prime} x \sin (n x) d x .
$$

4. Answer any two questions :
(a) Prove that the volume of the solid obtained by revolving the lemniscate $r^{2}=a^{2} \cos 2 \theta$ about the initial line is $\frac{1}{2} \pi a^{3}\left\{\frac{1}{\sqrt{2}} \log (\sqrt{2}+1)-\frac{1}{3}\right\}$.
(b) If $I_{m, n}=\int_{0}^{1} x^{m}(1-x)^{n} d x$,
where m and n are positive integers, then prove that $(m+n+1) I_{m, n}=n I_{m, n-1}$ and deduce that

$$
\mathrm{I}_{m, n}=\frac{m!n!}{(m+n+1)!}
$$

(c) Evaluate the surface area of the solid generated by revolving the cycloid

$$
\begin{aligned}
& x=a(\theta-\sin \theta), y=a(1-\cos \theta) \text { about the line } \\
& y=0
\end{aligned}
$$

Unit - III

5. Answer any three questions:

$$
3 \times 2=6
$$

(a) Find the centre and foci of the conic

$$
x^{2}-2 y^{2}-2 x+8 y-1=0
$$

(5)
(b) Find the equation of the sphere of which the circle $x y+y z+z x=0, x+y+z=3$ is a great circle.
(c) Find the condition that the line

$$
\begin{aligned}
& \frac{1}{r}=A \cos \theta+B \sin \theta \text { may touch the conic } \\
& \frac{1}{r}=1-e \cos \theta
\end{aligned}
$$

(d) For what angle must the axes be turned to remove the term $x y$ from $7 x^{2}+4 x y+3 y^{2}$.
(e) Find the equation of cone whose vertex is origin and the base curve is $x^{2}+y^{2}=4, z=2$.
6. Answer any one question :
$1 \times 5=5$
(a) If r be the radius of the circle

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}+2 u x+2 v y+2 w z+d=0 \\
& l x+m y+n z=0 \text { then prove that } \\
& \left(r^{2}+d\right)\left(l^{2}+m^{2}+n^{2}\right)=(m w-n v)^{2}+(n u-l w)^{2} \\
& +(l v-m u)^{2} \text { and find the centre. }
\end{aligned}
$$

(b) Show that the feet of the normals from the point (α, β, γ) to the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ lie on the intersection of the ellipsoid and cone $\frac{\alpha a^{2}\left(b^{2}-c^{2}\right)}{x}+\frac{\beta b^{2}\left(c^{2}-a^{2}\right)}{y}+\frac{\gamma c^{2}\left(a^{2}-b^{2}\right)}{z}=0$
7. Answer any one question :
$10 \times 1=10$
(a) (i) Show that the plane $3 x-2 y-z=0$
cuts the cones $21 x^{2}-4 y^{2}-5 z^{2}=0$ and

$$
3 y z-2 z x+2 x y=0
$$

in the same pair of perpendicular lines.
(ii) Find the equation of the cylinder, whose generators are parallel to the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$ and which passes through the conic $z=0,3 x^{2}+7 y^{2}=12$.
(b) (i) Find the locus of the point of intersection of the perpendicular generators of the hyperboloid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$. 4

(7)

(ii) Reduce the equation

$$
x^{2}+3 y^{2}+3 z^{2}-2 x y-2 y z-2 z x+1=0
$$

to its canonical form and determine the type of quadratic represented by it.

Unit - IV

8. Answer any two questions :
(a) Find the integrating factor of the differential equation

$$
\left(2 x y+3 x^{2} y+6 y^{3}\right) d x+\left(x^{2}+6 y^{2}\right) d y=0
$$

(b) Show that the general solution of the equation $\frac{d y}{d x}+P y=Q$ can be written in the form $y=k(u-v)+v$, where k is a constant and u and v are its two particular solutions.
(c) Solve : $\frac{d y}{d x}+y \cos x=x y^{\prime \prime}$.
9. Answer any one question :
(a) The population of a country increases at the rate of proportional to the number of inhabitants. If the population doubles in 30 years, in how many years will it triple?
(b) Solve : $\left(p x^{2}+y^{2}\right)(p x+y)=(p+1)^{2}$

$$
[u=x y, v=x+y]
$$

